1. GENERAL DESCRIPTION

The LH320H04 is a Color Active Matrix Liquid Crystal Display with Light Emission Diode(LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is transmissive type display operating in the normally black mode. This TFT-LCD has 3.19 inch diagonally measured active display area with (360*RGB*480) resolution. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes.

Block Diagram

	▲ MIPI DATA_P, DATA_N MIPI CLK_P, CLK_N	Driver IC (1 Chip)
User Co	VCC(2.85V), IOVCC(1.8V), GND(0V) RESET	TFT-LCD Panel (360×RGB×480)
Connector (22 F	FMARK	
Pin)	LED_ANODE LED_CATHODE	

Fig 1.1 Block Diagram of TFT-LCD Module with LED Backlight Unit

General Features

Item	Specification
Active Screen Size	3.19" diagonal
Outline Dimension	52.5 (H) x 73.63 (V) x 1.6 (T) Typ.
Pixel Pitch	44.75 (H) x 134.25 (V)
Pixel Format	360(H) X 480(V) (RGB Stripe)
Color Depth	24-bits (R8, G8, B8)
Interface	MIPI 1-lane command mode
Power Consumption	274mW (max. B/L on @ 10mA), 70mW (max. B/L off)
Luminance	350nit(typ.) @ 10mA

2. ABSOLUTE MAXIMUM RATINGS

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Decompositor	Currente e l	Valu	les	Linite	Nietee
Parameter	Symbol	Min	Max	Units	Notes
Power Supply Input	VDD	-0.3	4.0	V	
Power Supply Input	VEE	-0.3	4.0	V	
LED Current	I _{LED}	-	25	mA	1, 2

Table 2.1 Absolute Maximum Ratings

Notes:

1. Applies to each LED individually.

2. Allowable forward current is refer to Fig 2.1

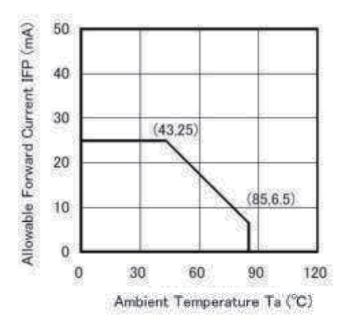


Fig 2.1 Ambient Temperature vs. Allowable Forward Current

3. ELECTRICAL SPECIFICATIONS

3-1. ELECTRICAL CHARACTERISTICS

aramatar	Symbol		Units	Notes		
arameter	Symbol	Min	Min Typ Max		Units	NOLES
Power Supply Input (Analog)	VCC	2.75	2.85	2.95	V	
Power Supply Input (Digital)	IOVCC	1.7	1.8	1.9	V	
"H"Level Input Voltage	V _{IH}	0.8 V _{IOVCC}	-	-	V	
"L"Level Input Voltage	V _{IL}	-	-	0.2 V _{IOVCC}	V	
Power Consumption, Panel	P _B		55	70	mW	1

Table 3.1 Electrical Characteristics Of TFT-LCD Module

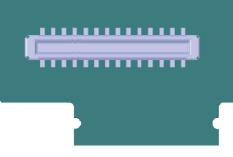
Notes:

1. Full white pattern at 60Hz

White : 255 Gray

3-2. BACK LIGHT UNIT

The edge-lighting type of back light unit consists of 5 LEDs which is connected in serial.


Table 3.2 Electrical Characteristics Of Back Light Unit

Deremeter	Symbol		Values		Linito	Notoo	
Parameter	Symbol	Min	Тур.	Max	Units	Notes	
LED Current	I _{LED}	-	10	25	mA		
LED Forward Voltage	V_{LED}	-	19.2	20.4	V		

3-3. INTERFACE CONNECTIONS

LCD Connector: HRS BM14B(0.8)-24DP-0.4V(51) (Hirose) System Mating Connector: HRS BM14B(0.8)-24DS-0.4V(51) (Hirose) Table 3.3 Module Connector Pin Configuration

Pin	Signal	lio	Description
1	VCC	I	2.85V Power Supply
2	VCC	I	2.85V Power Supply
3	GND	I	Ground
4	NC	-	No connect
5	NC	-	No connect
6	GND	I	Ground
7	DATA_N	I/O	MIPI_DATA_N
8	DATA_P	I/O	MIPI_DATA_P
9	GND	I	Ground
10	CLK_N	I	MIPI CLK_N
11	CLK_P	I	MIPI_CLK_P
12	GND	I	Ground
13	LED +	I	LED Anode
14	LED -	I	LED Cathode
15	GND	I	Ground
16	FMARK	I	Read (Active Low)
17	GND	I	Ground
18	NC	-	No connect
19	GND	I	Ground
20	RESET	I	Reset (Active Low)
21	GND	I	Ground
22	GND	I	Ground
23	GND	I	Ground
24	IOVCC	I	1.8V Power Supply

Note:

Fig 3.1 Connector Diagram

1. All GND(ground) pins should be connected together.

3-4. COLOR INPUT DATA REFERENCE

Table 3.4 Color vs. Dat	а
-------------------------	---

Colors &	Gray											D	ata	Sign	al										
Gray Scale	scale Levels	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	B1	B2	B3	B4	B5	B6	B7
Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blue		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Green		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Red		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Magent a		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
∥ Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Î	↓						,	,					ļ							ŀ					
↓ Brighter	↓						,	,					1												
Ungnicer	GS61	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GS62	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	GS63	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lí Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1	↓						1	,					ļ							ŀ					
↓ Brighter	↓						,	,					1							ŀ					
Ungnicer	GS61	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	GS62	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Green	GS63	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
ੀ Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	¥						,	,					ļ						,	Ļ					
↓ Brightor	↓						,	/					1							ł					
Brighter ↓	GS61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3-5. Power On/Off Sequence

Power On Sequence

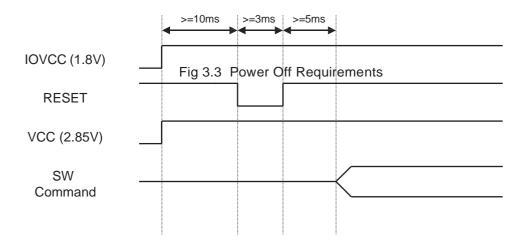
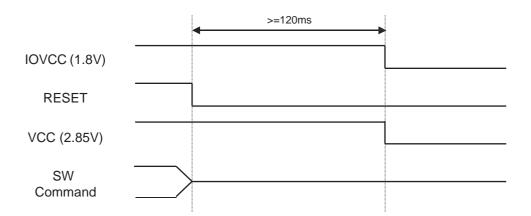



Fig 3.2 Power On Requirements

Power Off Sequence

3-6. Software Flow

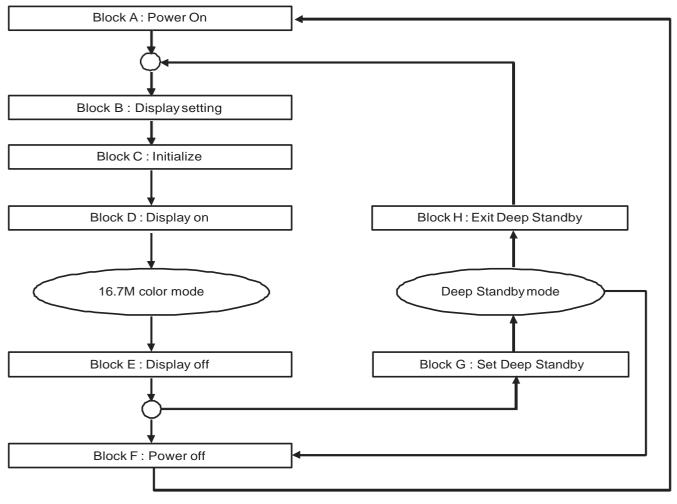


Fig 3.4 Software Flowchart

Table 3.5 Block A : Power on

Step	Command Parameter	Command name	Operation	Comment									
1	IOVCC(1.8V) on												
2		VCC(2.85V) on											
3		Wait > 10ms											
4		RESX = 0											
5		Wait >3ms											
6		RESX = 1											
7		Wait > 5ms Wait for Default value reload.											

Step	Command Parameter	Command name	Operation	Comment
1	F0h, 0xAA, 0x55, 0x52	Enable extend command	Send ENECMD Send 0xAA,0x55,0x52	
2	C1h,0x25,0x25,0x25,0xFF,0x05,0x10	VGH/VGL Booster Clock Control RAM keep mode enable	Send PWCTR2 Send 0x25,0x25,0x25,0xFF,0x05,0x10	
3		Wait for power stable of internal RAM		
4	35h,0x00	Tearing Effect On	Send TEON Send 0x00	
5	26h,0x10	Gamma Set	Send GAMSET Send 0x10	
6	2Ah,0x00,0x00,0x01,0x67	Column Address Set	Send CASET Send 0x00,0x00,0x01,0x67	360RGBx480
7	2Bh,0x00,0x00,0x01,0xDF	Row Address Set	Send RASET Send 0x00,0x00,0x01,0xDF	360RGBx480
8	B0h,0x00,0x5A	Display Interface Mode Control	Send IFMODE Send 0x00,0x5A	
9	B1h,0xBA,0x01,0x30,0x00,0x00	Display Normal mode Frame rate Control	Send FRMCRT1 Send 0xBA,0x01,0x30,0x00,0x00	Frame rate control
10	B4h,0x01,0x01,0x01	Inversion Control	Send INVCTR Send 0x01,0x01,0x01	
11	B8h,0x18,0x02	Display Function Selection	Send DFS Send 0x18, 0x02	
12	BFh,0x40	Chopper mode	Send CHPMOD Send 0x40	
13	C0h,0x71,0x7B,0x00,0x00,0x00,0x00, 0x00,0x00	voltage	Send PWCTR1 Send 0x71,0x7B,0x00,0x00,0x00,0x00,0x00,0x00	
14	C2h,0x61,0x04,0x61,0x53	Booster clamp voltage & frequence control	Send PWCTR3 Send 0x61,0x04,0x61,0x53	

23		This delay have to satisfy 60ms from RESET=H until this wait. (step 23+24 >53ms)		
22		Memory write 21ms, if 200Mbps 14ms, if 300Mbps 11ms, if 400Mbps	Send RAMWR Send Display data	
21	FEh,0x08	Gamma Write Control	Send GMACMD Send 0x08	
20	E5h,0x00,0x1D,0x37,0x4E,0x1E,0x31, 0x61,0x6B,0x1E,0x26,0xC6,0x25,0x5 C,0x6E,0xC5,0xD4,0x66,0x6E	Gamma Correction for Negative Blue	Send GAMCTRLNB Send 0x00,0x1D,0x37,0x4E,0x1E,0x31,0x61,0x6B, 0x1E,0x26,0xC6,0x25,0x5C,0x6E,0xC5,0xD4 ,0x66,0x6E	
19	E4h,0x00,0x1D,0x37,0x4E,0x1E,0x31, 0x61,0x6B,0x1E,0x26,0xC6,0x25,0x5 C,0x6E,0xC5,0xD4,0x66,0x6E	Gamma Correction for Positive Blue	Send GAMCTRLPB Send 0x00,0x1D,0x37,0x4E,0x1E,0x31,0x61,0x6B, 0x1E,0x26,0xC6,0x25,0x5C,0x6E,0xC5,0xD4 ,0x66,0x6E	
18	E3h,0x00,0x1D,0x42,0x5D,0x1D,0x31 ,0x61,0x70,0x1D,0x25,0xC9,0x26,0x5 B,0x6C,0xC5,0xD4,0x66,0x6E	Gamma Correction for Negative Green	Send GAMCTRLPR Send 0x00,0x1D,0x42,0x5D,0x1D,0x31,0x61,0x70, 0x1D,0x25,0xC9,0x26,0x5B,0x6C,0xC5,0xD 4,0x66,0x6E	
17	E2h,0x00,0x1D,0x42,0x5D,0x1D,0x31 ,0x61,0x70,0x1D,0x25,0xC9,0x26,0x5 B,0x6C,0xC5,0xD4,0x66,0x6E	Gamma Correction for Positive Green	Send GAMCTRLPR Send 0x00,0x1D,0x42,0x5D,0x1D,0x31,0x61,0x70, 0x1D,0x25,0xC9,0x26,0x5B,0x6C,0xC5,0xD 4,0x66,0x6E	
16	E1h,0x00,0x1D,0x42,0x5D,0x1D,0x31 ,0x61,0x70,0x1D,0x25,0xC9,0x26,0x5 B,0x6C,0xC5,0xD4,0x66,0x6E	Gamma Correction for Negative Red	Send GAMCTRLPR Send 0x00,0x1D,0x42,0x5D,0x1D,0x31,0x61,0x70, 0x1D,0x25,0xC9,0x26,0x5B,0x6C,0xC5,0xD 4,0x66,0x6E	
15	E0h,0x00,0x1D,0x42,0x5D,0x1D,0x31 ,0x61,0x70,0x1D,0x25,0xC9,0x26,0x5 B,0x6C,0xC5,0xD4,0x66,0x6E	Gamma Correction for Positive Red	Send GAMCTRLPR Send 0x00,0x1D,0x42,0x5D,0x1D,0x31,0x61,0x70, 0x1D,0x25,0xC9,0x26,0x5B,0x6C,0xC5,0xD 4,0x66,0x6E	

Step	Command Parameter	Command name	Operation	Comment
1	11h	Sleep Out	Send SLPOUT	
2		Wait 72ms		Wait for pumping stable due to dirty GND noise

Step	Command Parameter	Command name	Operation	Comment
1	13h	Normal display mode on	Send NORON	
2	29h	Dispay on	Send DISPON	

Table 3.9 Block E : Display on into 16.7M color mode

Step	Command Parameter	Command name	Operation	Comment
1	28h	Display off	Send DISPOFF	

Table 3.10 Block F : Power Off

Step	Command Parameter	Command name	Operation	Comment	
1	C1h,0x25,0x25,0x25,0xFF,0x05,0x00	VGH/VGL Booster Clock Control &	Send PWCTR2		
	C111,0x25,0x25,0x25,0xFF,0x05,0x00	RAM keep mode Disable	Send 0x25,0x25,0x25,0xFF,0x05,0x00		
2	10h Sleep In		Send SLPIN		
3	Delay >2 frames Wait for clear display				
4	VCC(2.85V) off				
5	IOVCC(1.8V) off				

Step	Command Parameter	Command name Operation		Comment
1	C1h,0x25,0x25,0x25,0xFF,0x05,0x00	VGH/VGL Booster Clock Control &	Send PWCTR2	
	C111,0x25,0x25,0x25,0xFF,0x05,0x00	RAM keep mode Disable	Send 0x25,0x25,0x25,0xFF,0x05,0x00	
2	10h	Sleep in Send SLPIN		
3				Wait for clear display & discharge LCD
3				voltages.
4	E8h 0:01	Enter deep standby mode	Send DSTB	
4	E8h, 0x01	Enter deep standby mode	Send DSTB=1	

Step	Command Parameter	Command name	Operation	Comment	
1	RESX = 0				
2	Wait > 3ms				
3	RESX = 1				
4	Wait > 5ms Wait for Default value reload.				

4. OPTICAL CHARACTERISTICS

4-1. Optical Characteristics – Backlight On

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
	®UP		70	80		°(degree)	Note 3
Viewing Angle	®DOWN	CR ™10	70	80		°(degree)	Note 3
Range	®LEFT		70	80		°(degree)	Note 3
	®RIGHT		70	80		°(degree)	Note 3
Contrast Ratio	CR	Optimal	600	800			Note 2
Brightness	Y	I _{LED} = 10mA	300	350		cd/?	Note 1 [PR880]
Brightness Uniformity	Y	I _{LED} =10mA	80			%	Note 5 [PR880]
Flicker	F	Optimal			10	%	Note 6
Response Time	r _f + r _r	® =0 ° Ta =25 °C		35	50	ms	Note 4
White	Wx		0.27	0.31	0.35		
Chromaticity	Wy		0.29	0.33	0.37		
Red	Rx		0.57	0.62	0.67		
Chromaticity	Ry		0.29	0.34	0.39		Nata 4
Green	Gx	® =0 ° Ta =25 °C	0.27	0.32	0.37		Note 1 [PR650]
Chromaticity	Gy	10-20 0	0.53	0.58	0.63		[
Blue	Bx		0.10	0.15	0.20		
Chromaticity	Ву		0.03	0.08	0.13		
Color Gamut	NTSC			60		%	

[Note 1] Optical Test Equipment Setup

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface. In case of backlight on, measured on the center area of the panel by PHOTO RESEARCH photometer PR-880&PR650 or Equivalent.

Fig 4.1 Backlight On (Optical Characteristic Measurement Equipment and Method)

[Note 2]

Contrast Ratio is defined as follows ;

Photo detector output with LCD being "White"

Contrast Ratio(CR) =

Photo detector output with LCD being "Black"

[Note 3]

Viewing Angle Range is defined as follows;

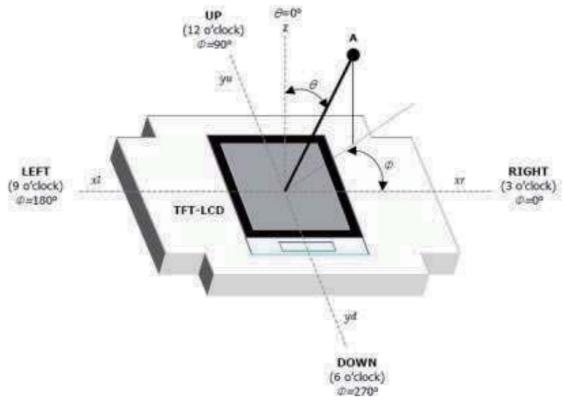


Fig 4.2 Viewing Angle Definitions

[Note 4]

Response time is obtained by measuring the transition time of photo detector output, when input signals are applied so as to make the area "black" to and from "white".

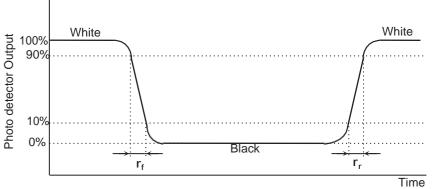


Fig 4.3 Response Time Definition

[Note 5]

The brightness measurement is taken at point B5.

Brightness Uniformity

_

Minimum photo detector output for B1-B9 with all pixels white Maximum photo detector output for B1-B9 with all pixels white

x 100

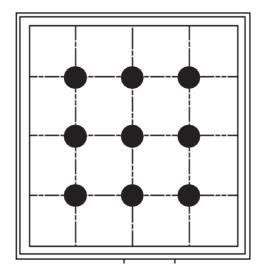
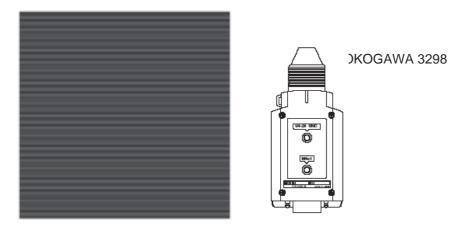
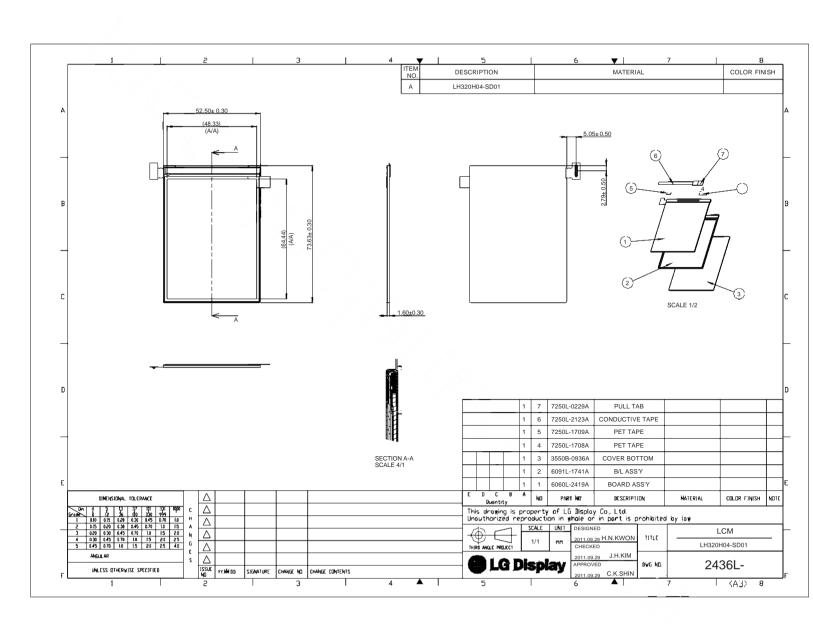


Fig 4.4 Brightness Measurement Points

[Note 6]

The Flicker measurement is taken at center area of the panel (B5). Measurement equipment is YOKOGAWA 3298. Measurement pattern is Black and Middle gray horizontal.




Fig 4.5 Flicker Measurement Points

5. MECHANICAL CHRACTERISTICS

The contents provide general mechanical characteristics for the model. In addition the figures in the next page are detailed mechanical drawing of the LCD.

DIMENSION	MIN	TYP	MAX	UNIT
HORIZONTAL	52.20	52.50	52.80	mm
VERTICAL	73.33	73.63	73.93	mm
THICKNESS	1.30	1.60	1.90	mm

[Outline Dimension]

16/24

Ver. 0.0

6. RELIABLITY TEST

No.	Test Items	Test Condition	Remark
1	Low Temperature Storage	Ta = -20? 240hrs	
2	High Temperature Storage	Ta = 70? 240hrs	
3	Low Temperature Operation	Ta = -10? 240hrs	
4	High Temperature Operation	Ta = 60? 240hrs	
5	High Temperature and High Humidity Operation	Ta = 50? 90%RH 240hrs	

{ Result Evaluation Criteria }

TFT-LCD Panel should be at room temperature for 2 hours after the reliability test is over. There should be no particular change which might affect the practical display function and the display quality should be conducted under normal operating condition.

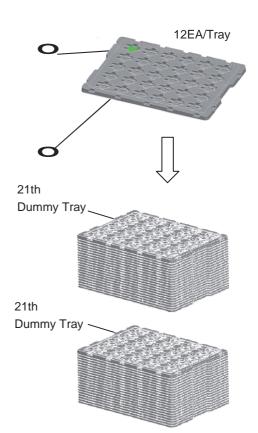
7. International Standards

- 7-1. Safety
- a) UL 60950-1, Second Edition, Underwriters Laboratories Inc. Information Technology Equipment - Safety - Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Second Edition, Canadian Standards Association. Information Technology Equipment - Safety - Part 1 : General Requirements.
- c) EN 60950-1:2006 + A11:2009, European Committee for Electro technical Standardization (CENELEC). Information Technology Equipment - Safety - Part 1 : General Requirements.

7-2. Environment

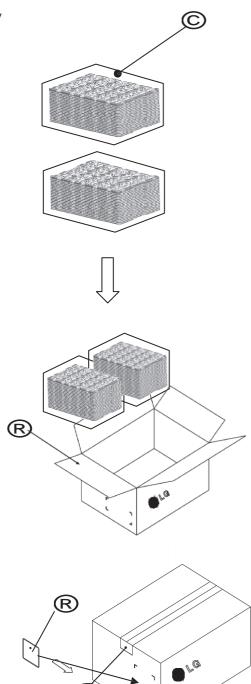
a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

7-3. EMC


a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992

b) CISPR22 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.

c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)


8. PACKING

- a) Package Quantity in One Box : 320 pcs
- b) Box Size : 468mm X 355mm X 226mm
- c) 1Box = 40(Full Tray) + 2(Dummy / Top Tray) = 42 Tray

No.	Description	Material
1	Module	
2	Packing Tray	PET(0.8t)
3	Bag	PE 520x710
4	Box	SWR4
5	Таре	OPP 70MMx300m
6	Label	Art Paper 100x70

9. PRECAUTIONS

Please pay attention to the following when you use this TFT LCD module.

9-1. ASSEMBLY PRECAUTIONS

- (1) Please attach a transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (2) You should adopt radiation structure to satisfy the temperature specification.
- (3) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (4) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics deteriorate the polarizer.)
- (5) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (6) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and colorfading.
- (7) Do not open the case because inside circuits do not have sufficient strength.
- (8) The metal case of a module should be contacted to electrical ground of your system.

9-2. OPERATING PRECAUTIONS

- The spike noise causes the mis-operation of circuits. It should be lower than following voltage : V=±200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.

Please carefully peel off the protection film without rubbing it against the polarizer.

- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.